EconPapers    
Economics at your fingertips  
 

Reversible data hiding techniques with high message embedding capacity in images

Furqan Aziz, Taeeb Ahmad, Abdul Haseeb Malik, M Irfan Uddin, Shafiq Ahmad and Mohamed Sharaf

PLOS ONE, 2020, vol. 15, issue 5, 1-24

Abstract: Reversible Data Hiding (RDH) techniques have gained popularity over the last two decades, where data is embedded in an image in such a way that the original image can be restored. Earlier works on RDH was based on the Image Histogram Modification that uses the peak point to embed data in the image. More recent works focus on the Difference Image Histogram Modification that exploits the fact that the neighbouring pixels of an image are highly correlated and therefore the difference of image makes more space to embed large amount of data. In this paper we propose a framework to increase the embedding capacity of reversible data hiding techniques that use a difference of image to embed data. The main idea is that, instead of taking the difference of the neighboring pixels, we rearrange the columns (or rows) of the image in a way that enhances the smooth regions of an image. Any difference based technique to embed data can then be used in the transformed image. The proposed method is applied on different types of images including textures, patterns and publicly available images. Experimental results demonstrate that the proposed method not only increases the message embedding capacity of a given image by more than 50% but also the visual quality of the marked image containing the message is more than the visual quality obtained by existing state-of-the-art reversible data hiding technique. The proposed technique is also verified by Pixel Difference Histogram (PDH) Stegoanalysis and results demonstrate that marked images generated by proposed method is undetectable by PDH analysis.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231602 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31602&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0231602

DOI: 10.1371/journal.pone.0231602

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0231602