Dealing with highly skewed hospital length of stay distributions: The use of Gamma mixture models to study delivery hospitalizations
Eva Williford,
Valerie Haley,
Louise-Anne McNutt and
Victoria Lazariu
PLOS ONE, 2020, vol. 15, issue 4, 1-18
Abstract:
The increased focus on addressing severe maternal morbidity and maternal mortality has led to studies investigating patient and hospital characteristics associated with longer hospital stays. Length of stay (LOS) for delivery hospitalizations has a strongly skewed distribution with the vast majority of LOS lasting two to three days in the United States. Prior studies typically focused on common LOSs and dealt with the long LOS distribution tail in ways to fit conventional statistical analyses (e.g., log transformation, trimming). This study demonstrates the use of Gamma mixture models to analyze the skewed LOS distribution. Gamma mixture models are flexible and, do not require data transformation or removal of outliers to accommodate many outcome distribution shapes, these models allow for the analysis of patients staying in the hospital for a longer time, which often includes those women experiencing worse outcomes. Random effects are included in the model to account for patients being treated within the same hospitals. Further, the role and influence of differing placements of covariates on the results is discussed in the context of distinct model specifications of the Gamma mixture regression model. The application of these models shows that they are robust to the placement of covariates and random effects. Using New York State data, the models showed that longer LOS for childbirth hospitalizations were more common in hospitals designated to accept more complicated deliveries, across hospital types, and among Black women. Primary insurance also was associated with LOS. Substantial variation between hospitals suggests the need to investigate protocols to standardize evidence-based medical care.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231825 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 31825&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0231825
DOI: 10.1371/journal.pone.0231825
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().