EconPapers    
Economics at your fingertips  
 

A new linear regression-like residual for survival analysis, with application to genome wide association studies of time-to-event data

Veronica J Vieland, Sang-Cheol Seok and William C L Stewart

PLOS ONE, 2020, vol. 15, issue 5, 1-15

Abstract: In linear regression, a residual measures how far a subject's observation is from expectation; in survival analysis, a subject's Martingale or deviance residual is sometimes interpreted similarly. Here we consider ways in which a linear regression-like interpretation is not appropriate for Martingale and deviance residuals, and we develop a novel time-to-event residual which does have a linear regression-like interpretation. We illustrate the utility of this new residual via simulation of a time-to-event genome-wide association study, motivated by a real study seeking genetic modifiers of Duchenne Muscular Dystrophy. By virtue of its linear regression-like characteristics, our new residual may prove useful in other contexts as well.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232300 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 32300&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0232300

DOI: 10.1371/journal.pone.0232300

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0232300