EconPapers    
Economics at your fingertips  
 

Adoption of image surface parameters under moving edge computing in the construction of mountain fire warning method

Chen Cheng, Hui Zhou, Xuchao Chai, Yang Li, Danning Wang, Yao Ji, Shichuan Niu and Ying Hou

PLOS ONE, 2020, vol. 15, issue 5, 1-16

Abstract: In order to cope with the problems of high frequency and multiple causes of mountain fires, it is very important to adopt appropriate technologies to monitor and warn mountain fires through a few surface parameters. At the same time, the existing mobile terminal equipment is insufficient in image processing and storage capacity, and the energy consumption is high in the data transmission process, which requires calculation unloading. For this circumstance, first, a hierarchical discriminant analysis algorithm based on image feature extraction is introduced, and the image acquisition software in the mobile edge computing environment in the android system is designed and installed. Based on the remote sensing data, the land surface parameters of mountain fire are obtained, and the application of image recognition optimization algorithm in the mobile edge computing (MEC) environment is realized to solve the problem of transmission delay caused by traditional mobile cloud computing (MCC). Then, according to the forest fire sensitivity index, a forest fire early warning model based on MEC is designed. Finally, the image recognition response time and bandwidth consumption of the algorithm are studied, and the occurrence probability of mountain fire in Muli county, Liangshan prefecture, Sichuan is predicted. The results show that, compared with the MCC architecture, the algorithm presented in this study has shorter recognition and response time to different images in WiFi network environment; compared with MCC, MEC architecture can identify close users and transmit less data, which can effectively reduce the bandwidth pressure of the network. In most areas of Muli county, Liangshan prefecture, the probability of mountain fire is relatively low, the probability of mountain fire caused by non-surface environment is about 8 times that of the surface environment, and the influence of non-surface environment in the period of high incidence of mountain fire is lower than that in the period of low incidence. In conclusion, the surface parameters of MEC can be used to effectively predict the mountain fire and provide preventive measures in time.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232433 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 32433&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0232433

DOI: 10.1371/journal.pone.0232433

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0232433