EconPapers    
Economics at your fingertips  
 

Solving text clustering problem using a memetic differential evolution algorithm

Hossam M J Mustafa, Masri Ayob, Dheeb Albashish and Sawsan Abu-Taleb

PLOS ONE, 2020, vol. 15, issue 6, 1-18

Abstract: The text clustering is considered as one of the most effective text document analysis methods, which is applied to cluster documents as a consequence of the expanded big data and online information. Based on the review of the related work of the text clustering algorithms, these algorithms achieved reasonable clustering results for some datasets, while they failed on a wide variety of benchmark datasets. Furthermore, the performance of these algorithms was not robust due to the inefficient balance between the exploitation and exploration capabilities of the clustering algorithm. Accordingly, this research proposes a Memetic Differential Evolution algorithm (MDETC) to solve the text clustering problem, which aims to address the effect of the hybridization between the differential evolution (DE) mutation strategy with the memetic algorithm (MA). This hybridization intends to enhance the quality of text clustering and improve the exploitation and exploration capabilities of the algorithm. Our experimental results based on six standard text clustering benchmark datasets (i.e. the Laboratory of Computational Intelligence (LABIC)) have shown that the MDETC algorithm outperformed other compared clustering algorithms based on AUC metric, F-measure, and the statistical analysis. Furthermore, the MDETC is compared with the state of art text clustering algorithms and obtained almost the best results for the standard benchmark datasets.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232816 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 32816&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0232816

DOI: 10.1371/journal.pone.0232816

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0232816