EconPapers    
Economics at your fingertips  
 

Mesh smoothing algorithm based on exterior angles split

Yongqing Hai, Siyuan Cheng, Yufei Guo and Shaojing Li

PLOS ONE, 2020, vol. 15, issue 5, 1-24

Abstract: Since meshes of poor quality give rise to low accuracy in finite element analysis and kinds of inconveniences in many other applications, mesh smoothing is widely used as an essential technique for the improvement of mesh quality. With respect to this issue, the main contribution of this paper is that a novel mesh smoothing method based on an exterior-angle-split process is proposed. The proposed method contains three main stages: the first stage is independent element geometric transformation performed by exterior-angle-split operations, treating elements unconnected; the second stage is to offset scaling and displacement induced by element transformation; the third stage is to determine the final positions of nodes with a weighted strategy. Theoretical proof describes the regularity of this method and many numerical experiments illustrate its convergence. Not only is this method applicable for triangular mesh, but also can be naturally extended to arbitrary polygonal surface mesh. Quality improvements of demonstrations on triangular and quadrilateral meshes show the effectiveness of this method.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232854 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 32854&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0232854

DOI: 10.1371/journal.pone.0232854

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0232854