EconPapers    
Economics at your fingertips  
 

Enhancing big data in the social sciences with crowdsourcing: Data augmentation practices, techniques, and opportunities

Nathaniel D Porter, Ashton M Verdery and S Michael Gaddis

PLOS ONE, 2020, vol. 15, issue 6, 1-21

Abstract: Proponents of big data claim it will fuel a social research revolution, but skeptics challenge its reliability and decontextualization. The largest subset of big data is not designed for social research. Data augmentation–systematic assessment of measurement against known quantities and expansion of extant data with new information–is an important tool to maximize such data's validity and research value. Using trained research assistants or specialized algorithms are common approaches to augmentation but may not scale to big data or appease skeptics. We consider a third alternative: data augmentation with online crowdsourcing. Three empirical cases illustrate strengths and limitations of crowdsourcing, using Amazon Mechanical Turk to verify automated coding, link online databases, and gather data on online resources. Using these, we develop best practice guidelines and a reporting template to enhance reproducibility. Carefully designed, correctly applied, and rigorously documented crowdsourcing help address concerns about big data's usefulness for social research.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233154 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 33154&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0233154

DOI: 10.1371/journal.pone.0233154

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0233154