EconPapers    
Economics at your fingertips  
 

Computational load reduction of the agent guidance problem using Mixed Integer Programming

Vinícius Antonio Battagello, Nei Yoshihiro Soma and Rubens Junqueira Magalhães Afonso

PLOS ONE, 2020, vol. 15, issue 6, 1-45

Abstract: This paper employs a solution to the agent-guidance problem in an environment with obstacles, whose avoidance techniques have been extensively used in the last years. There is still a gap between the solution times required to obtain a trajectory and those demanded by real world applications. These usually face a tradeoff between the limited on-board processing performance and the high volume of computing operations demanded by those real-time applications. In this paper we propose a deferred decision-based technique that produces clusters used for obstacle avoidance as the agent moves in the environment, like a driver that, at night, enlightens the road ahead as her/his car moves along a highway. By considering the spatial and temporal relevance of each obstacle throughout the planning process and pruning areas that belong to the constrained domain, one may relieve the inherent computational burden of avoidance. This strategy reduces the number of operations required and increases it on demand, since a computationally heavier problem is tackled only if the simpler ones are not feasible. It consists in an improvement based solely on problem modeling, which, by example, may offer processing times in the same order of magnitude than the lower-bound given by the relaxed form of the problem.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233441 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 33441&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0233441

DOI: 10.1371/journal.pone.0233441

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0233441