An investigation on the energy absorption characteristics of a multi-cell hexagonal tube under axial crushing loads
Li Yang,
Mingkai Yue,
Zhen Li,
Tong Shen and
on behalf of The Chongqing postdoctoral research Project
PLOS ONE, 2020, vol. 15, issue 6, 1-24
Abstract:
A multi-cell tube enhances the energy absorption considerably compared to the absorption of a single tube under the same conditions. A novel tube configuration, namely, a multi-cell hexagonal tube, was proposed in this paper. The multi-cell tubes consist of three basic elements: a 2-panel element and two 3-panel elements (I and II). Simplified super folding element theory was utilized to estimate the energy dissipation of the basic elements. Based on this estimation, a theoretical expression for the mean crushing force was developed for the proposed tubes. The relative errors between a simulation, an experiment and theoretical results were no more than 5%. The effects of the hexagonal tube size and wall thickness on the crashworthiness of the multi-cell tubes were investigated. To a certain extent, the energy absorption and peak crushing force increased as the tube size and thickness increased. The response surface method (RSM) and the multi-objective non-dominated sorting genetic algorithm (NSGA-II) were used to improve the crashworthiness of the tube, and Pareto fronts were achieved. Finally, it was concluded that the optimal solution is C = 45 mm, t1 = 3.0 mm, and t2 = 2.35 mm, and the corresponding SEA and PCF were 16.52 kJ/kg and 411.36 kN, respectively.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233708 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 33708&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0233708
DOI: 10.1371/journal.pone.0233708
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).