EconPapers    
Economics at your fingertips  
 

Quantification of cerebral veins in patients with acute migraine with aura: A fully automated quantification algorithm using susceptibility-weighted imaging

Philipe Sebastian Breiding, Frauke Kellner-Weldon, Lorenz Grunder, Adrian Scutelnic, Urs Fischer, Thomas Raphael Meinel, Nedelina Slavova, Jan Gralla, Marwan El-Koussy and Niklaus Denier

PLOS ONE, 2020, vol. 15, issue 6, 1-11

Abstract: Introduction: Susceptibility weighted imaging (SWI) is a very sensitive technique that often depicts prominent focal veins (PFV) in patients with acute migraine with aura (MwA). Interpretation of visual venous asymmetry (VVA) between brain hemispheres on SWI may help support the clinical diagnosis of MwA. Our goal was to develop an automated algorithm for segmentation and quantification of cerebral veins using SWI. Materials and methods: Expert readers visually evaluated SWI of patients with acute MwA for VVA. Subsequently a fully automated algorithm based on 3D normalization and 2D imaging processing using SPM and MATLAB image processing software including top-hat transform was used to quantify cerebral veins and to calculate volumetric differences between hemispheres. Results: Fifty patients with MwA were examined with SWI. VVA was present in 20 of 50 patients (40%). In 95% of patients with VVA, the fully automated calculation agreed with the side that visually harboured more PFV. Our algorithm showed a sensitivity of 95%, specificity of 90% and accuracy of 92% for detecting VVA. Patients with VVA had significantly larger vein volume on the hemisphere with more PFV compared to patients without (15.90 ± 5.38 ml vs 11.93 ± 5.31 ml; p = 0.013). The mean difference in venous volume between hemispheres in patients with VVA was larger compared to patients without VVA (16.34 ± 7.76% vs 4.31 ± 3.26% p

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233992 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 33992&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0233992

DOI: 10.1371/journal.pone.0233992

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0233992