Nonparametric testing of lack of dependence in functional linear models
Wenjuan Hu,
Nan Lin and
Baoxue Zhang
PLOS ONE, 2020, vol. 15, issue 6, 1-24
Abstract:
An important inferential task in functional linear models is to test the dependence between the response and the functional predictor. The traditional testing theory was constructed based on the functional principle component analysis which requires estimating the covariance operator of the functional predictor. Due to the intrinsic high-dimensionality of functional data, the sample is often not large enough to allow accurate estimation of the covariance operator and hence causes the follow-up test underpowered. To avoid the expensive estimation of the covariance operator, we propose a nonparametric method called Functional Linear models with U-statistics TEsting (FLUTE) to test the dependence assumption. We show that the FLUTE test is more powerful than the current benchmark method (Kokoszka P,2008; Patilea V,2016) in the small or moderate sample case. We further prove the asymptotic normality of our test statistic under both the null hypothesis and a local alternative hypothesis. The merit of our method is demonstrated by both simulation studies and real examples.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234094 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 34094&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0234094
DOI: 10.1371/journal.pone.0234094
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).