EconPapers    
Economics at your fingertips  
 

A comparative study of two methods to predict the incidence of hepatitis B in Guangxi, China

Yanling Zheng, Liping Zhang, XiXun Zhu and Gang Guo

PLOS ONE, 2020, vol. 15, issue 6, 1-12

Abstract: In recent years, the incidence of hepatitis B (HB) in Guangxi is higher than that of the national level; it has been increasing, so it is urgent to do a good predictive research of HB incidence, which can help analyze the early warning of hepatitis B in Guangxi, China. In the study, the feasibility of predicting HB incidence in Guangxi by autoregressive integrated moving average (ARIMA) model method and Elman neural network (ElmanNN) method was discussed respectively, and the prediction accuracy of the two models was compared. Finally, we established the ARIMA (0, 1, 1) model and ElmanNN with 8 neurons. Both ARIMA (0, 1, 1) model and ElmanNN model had good performance, and their prediction accuracy were high. The fitting and prediction root-mean-square error (RMSE) and mean absolute error (MAE) of ElmanNN were smaller than those of ARIMA (0, 1, 1) model, which indicated that ElmanNN was superior to ARIMA (0, 1, 1) model in predicting the incidence of hepatitis B in Guangxi. Based on the ElmanNN, the HB incidence from September 2019 to December 2020 in Guangxi was predicted, the predicted results showed that the incidence of HB in 2020 was slightly higher than that in 2019 and the change trend was similar to that in 2019, for 2021 and beyond, the ElmanNN model could be used to continue the predictive analysis.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234660 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 34660&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0234660

DOI: 10.1371/journal.pone.0234660

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0234660