EconPapers    
Economics at your fingertips  
 

Systematic review of the use of “magnitude-based inference” in sports science and medicine

Keith R Lohse, Kristin L Sainani, J Andrew Taylor, Michael L Butson, Emma J Knight and Andrew J Vickers

PLOS ONE, 2020, vol. 15, issue 6, 1-22

Abstract: Magnitude-based inference (MBI) is a controversial statistical method that has been used in hundreds of papers in sports science despite criticism from statisticians. To better understand how this method has been applied in practice, we systematically reviewed 232 papers that used MBI. We extracted data on study design, sample size, and choice of MBI settings and parameters. Median sample size was 10 per group (interquartile range, IQR: 8–15) for multi-group studies and 14 (IQR: 10–24) for single-group studies; few studies reported a priori sample size calculations (15%). Authors predominantly applied MBI’s default settings and chose “mechanistic/non-clinical” rather than “clinical” MBI even when testing clinical interventions (only 16 studies out of 232 used clinical MBI). Using these data, we can estimate the Type I error rates for the typical MBI study. Authors frequently made dichotomous claims about effects based on the MBI criterion of a “likely” effect and sometimes based on the MBI criterion of a “possible” effect. When the sample size is n = 8 to 15 per group, these inferences have Type I error rates of 12%-22% and 22%-45%, respectively. High Type I error rates were compounded by multiple testing: Authors reported results from a median of 30 tests related to outcomes; and few studies specified a primary outcome (14%). We conclude that MBI has promoted small studies, promulgated a “black box” approach to statistics, and led to numerous papers where the conclusions are not supported by the data. Amidst debates over the role of p-values and significance testing in science, MBI also provides an important natural experiment: we find no evidence that moving researchers away from p-values or null hypothesis significance testing makes them less prone to dichotomization or over-interpretation of findings.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235318 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35318&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0235318

DOI: 10.1371/journal.pone.0235318

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0235318