A multiresolution mixture generative adversarial network for video super-resolution
Zhiqiang Tian,
Yudiao Wang,
Shaoyi Du and
Xuguang Lan
PLOS ONE, 2020, vol. 15, issue 7, 1-15
Abstract:
Generative adversarial networks (GANs) have been used to obtain super-resolution (SR) videos that have improved visual perception quality and more coherent details. However, the latest methods perform poorly in areas with dense textures. To better recover the areas with dense textures in video frames and improve the visual perception quality and coherence in videos, this paper proposes a multiresolution mixture generative adversarial network for video super-resolution (MRMVSR). We propose a multiresolution mixture network (MRMNet) as the generative network that can simultaneously generate multiresolution feature maps. In MRMNet, the high-resolution (HR) feature maps can continuously extract information from low-resolution (LR) feature maps to supplement information. In addition, we propose a residual fluctuation loss function for video super-resolution. The residual fluctuation loss function is used to reduce the overall residual fluctuation on SR and HR video frames to avoid a scenario where local differences are too large. Experimental results on the public benchmark dataset show that our method outperforms the state-of-the-art methods for the majority of the test sets.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235352 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35352&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0235352
DOI: 10.1371/journal.pone.0235352
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().