Prediction of Mycobacterium tuberculosis pyrazinamidase function based on structural stability, physicochemical and geometrical descriptors
Rydberg Roman Supo-Escalante,
Aldhair Médico,
Eduardo Gushiken,
Gustavo E Olivos-Ramírez,
Yaneth Quispe,
Fiorella Torres,
Melissa Zamudio,
Ricardo Antiparra,
L Mario Amzel,
Robert H Gilman,
Patricia Sheen and
Mirko Zimic
PLOS ONE, 2020, vol. 15, issue 7, 1-26
Abstract:
Background: Pyrazinamide is an important drug against the latent stage of tuberculosis and is used in both first- and second-line treatment regimens. Pyrazinamide-susceptibility test usually takes a week to have a diagnosis to guide initial therapy, implying a delay in receiving appropriate therapy. The continued increase in multi-drug resistant tuberculosis and the prevalence of pyrazinamide resistance in several countries makes the development of assays for prompt identification of resistance necessary. The main cause of pyrazinamide resistance is the impairment of pyrazinamidase function attributed to mutations in the promoter and/or pncA coding gene. However, not all pncA mutations necessarily affect the pyrazinamidase function. Objective: To develop a methodology to predict pyrazinamidase function from detected mutations in the pncA gene. Methods: We measured the catalytic constant (kcat), KM, enzymatic efficiency, and enzymatic activity of 35 recombinant mutated pyrazinamidase and the wild type (Protein Data Bank ID = 3pl1). From all the 3D modeled structures, we extracted several predictors based on three categories: structural stability (estimated by normal mode analysis and molecular dynamics), physicochemical, and geometrical characteristics. We used a stepwise Akaike’s information criterion forward multiple log-linear regression to model each kinetic parameter with each category of predictors. We also developed weighted models combining the three categories of predictive models for each kinetic parameter. We tested the robustness of the predictive ability of each model by 6-fold cross-validation against random models. Results: The stability, physicochemical, and geometrical descriptors explained most of the variability (R2) of the kinetic parameters. Our models are best suited to predict kcat, efficiency, and activity based on the root-mean-square error of prediction of the 6-fold cross-validation. Conclusions: This study shows a quick approach to predict the pyrazinamidase function only from the pncA sequence when point mutations are present. This can be an important tool to detect pyrazinamide resistance.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235643 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35643&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0235643
DOI: 10.1371/journal.pone.0235643
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().