EconPapers    
Economics at your fingertips  
 

Susceptibility mapping and zoning of highway landslide disasters in China

Chao Yin, Haoran Li, Fa Che, Ying Li, Zhinan Hu and Dong Liu

PLOS ONE, 2020, vol. 15, issue 9, 1-22

Abstract: Prominent regional differentiations of highway landslide disasters (HLDs) bring great difficulties in highway planning, designing and disaster mitigation, therefore, a comprehensive understanding of HLDs from the spatial perspective is a basis for reducing damages. Statistical prediction methods and machine learning methods have some defects in landslide susceptibility mapping (LSM), meanwhile, hybrid methods have been developed by combining the statistical prediction methods with machine learning methods in recent years, and some of them were reported to perform better than conventional methods. In view of this, the principal component analysis (PCA) method was used to extract the susceptibility evaluation indexes of HLDs; the particle swarm optimization-support vector machine (PSO-SVM) model and genetic algorithm-support vector machine (GA-SVM) model were implemented to the susceptibility mapping and zoning of HLDs in China. The research results show that the accumulative contribution rate of the four principal components is 92.050%; evaluation results of the PSO-SVM model are better than those of the GA-SVM model; micro dangerous areas, moderate dangerous areas, severe dangerous areas and extreme dangerous areas account for 24.24%, 19.49%, 36.53% and 19.74% of the total areas of China; among the 1543 disaster points in the HLDs inventory, there are 134, 182, 421 and 806 located in the above areas respectively.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235780 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35780&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0235780

DOI: 10.1371/journal.pone.0235780

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0235780