EconPapers    
Economics at your fingertips  
 

Value of laboratory results in addition to vital signs in a machine learning algorithm to predict in-hospital cardiac arrest: A single-center retrospective cohort study

Ryo Ueno, Liyuan Xu, Wataru Uegami, Hiroki Matsui, Jun Okui, Hiroshi Hayashi, Toru Miyajima, Yoshiro Hayashi, David Pilcher and Daryl Jones

PLOS ONE, 2020, vol. 15, issue 7, 1-16

Abstract: Background: Although machine learning-based prediction models for in-hospital cardiac arrest (IHCA) have been widely investigated, it is unknown whether a model based on vital signs alone (Vitals-Only model) can perform similarly to a model that considers both vital signs and laboratory results (Vitals+Labs model). Methods: All adult patients hospitalized in a tertiary care hospital in Japan between October 2011 and October 2018 were included in this study. Random forest models with/without laboratory results (Vitals+Labs model and Vitals-Only model, respectively) were trained and tested using chronologically divided datasets. Both models use patient demographics and eight-hourly vital signs collected within the previous 48 hours. The primary and secondary outcomes were the occurrence of IHCA in the next 8 and 24 hours, respectively. The area under the receiver operating characteristic curve (AUC) was used as a comparative measure. Sensitivity analyses were performed under multiple statistical assumptions. Results: Of 141,111 admitted patients (training data: 83,064, test data: 58,047), 338 had an IHCA (training data: 217, test data: 121) during the study period. The Vitals-Only model and Vitals+Labs model performed comparably when predicting IHCA within the next 8 hours (Vitals-Only model vs Vitals+Labs model, AUC = 0.862 [95% confidence interval (CI): 0.855–0.868] vs 0.872 [95% CI: 0.867–0.878]) and 24 hours (Vitals-Only model vs Vitals+Labs model, AUC = 0.830 [95% CI: 0.825–0.835] vs 0.837 [95% CI: 0.830–0.844]). Both models performed similarly well on medical, surgical, and ward patient data, but did not perform well for intensive care unit patients. Conclusions: In this single-center study, the machine learning model predicted IHCAs with good discrimination. The addition of laboratory values to vital signs did not significantly improve its overall performance.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235835 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 35835&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0235835

DOI: 10.1371/journal.pone.0235835

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0235835