On-line parameter identification of the lumped arterial system model: A simulation study
Feng Huang and
Shunv Ying
PLOS ONE, 2020, vol. 15, issue 7, 1-17
Abstract:
A lumped model of the arterial system has been used in constructing a hybrid mock loop due to its real-time response. However, the parameters of the model are always from a general case and not adapted to a specific patient. In this study, we focused on on-line parameter identification of the lumped model of the arterial system that could be used for a specific patient. A five-element lumped arterial model is adopted in this study, in which the five parameters are to be determined. The aortic flow rate and the venous pressure are chosen as the inputs of the model, and aortic pressure as the output. An iterative optimization based on the established state space equations of the five-element model is used to seek the best parameter values by minimizing the difference between the model prediction and the previously obtained aortic pressure. The method is validated using simulated data from a complete numerical cardiovascular model. Results show that the method can track the dynamic variation of the parameters very well. Finally, a sensitivity analysis of the model parameters is conducted to interpret the effect of parameter changes. The good performance of the identification demonstrates the potential application of this method to customize a hybrid mock loop for a specific patient or clinically monitor the arterial vessel characteristics in real time.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236012 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 36012&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0236012
DOI: 10.1371/journal.pone.0236012
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().