EconPapers    
Economics at your fingertips  
 

A novel serum miRNA-pair classifier for diagnosis of sarcoma

Zheng Jin, Shanshan Liu, Pei Zhu, Mengyan Tang, Yuanxin Wang, Yuan Tian, Dong Li, Xun Zhu, Dongmei Yan and Zhenhua Zhu

PLOS ONE, 2020, vol. 15, issue 7, 1-9

Abstract: Soft tissue sarcomas (STS) is a set of rare malignant tumor originated from mesoderm. For the prognosis of sarcoma, early diagnosis is important, however, currently no mature and non-invasive method for diagnosis exists. MicroRNAs (miRNAs) are a class of noncoding RNAs and their expression varies greatly, especially during tumor activity. The purpose of this study was to construct a predictive model for the diagnosis of sarcomas based on the relative expression level of miRNA in serum. miRNA array expression data of 677 samples including 402 malignant sarcoma samples and 275 healthy samples was used to construct the prediction model. Based on 6 gene pairs, random generalized linear model (RGLM) was constructed, with an accuracy of 100% in the internal test dataset and of 74.3% in the merged external dataset in prediction whether a serum sample was obtained from a sarcoma patient, with a specificity of 100% in the internal test dataset and 90.5% in the external dataset. In conclusion, our serum miRNA-pair classifier has the potential to be used for the screening of sarcoma with high accuracy and specificity.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236097 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 36097&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0236097

DOI: 10.1371/journal.pone.0236097

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0236097