EconPapers    
Economics at your fingertips  
 

Early classification of spatio-temporal events using partial information

Sevvandi Kandanaarachchi, Rob Hyndman and Kate Smith-Miles

PLOS ONE, 2020, vol. 15, issue 8, 1-39

Abstract: This paper investigates event extraction and early event classification in contiguous spatio-temporal data streams, where events need to be classified using partial information, i.e. while the event is ongoing. The framework incorporates an event extraction algorithm and an early event classification algorithm. We apply this framework to synthetic and real problems and demonstrate its reliability and broad applicability. The algorithms and data are available in the R package eventstream, and other code in the supplementary material.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236331 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 36331&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0236331

DOI: 10.1371/journal.pone.0236331

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pone00:0236331