Generating complex networks with time-to-control communities
Guilherme Ramos and
Sérgio Pequito
PLOS ONE, 2020, vol. 15, issue 8, 1-12
Abstract:
Dynamical networks are pervasive in a multitude of natural and human-made systems. Often, we seek to guarantee that their state is steered to the desired goal within a specified number of time steps. Different network topologies lead to implicit trade-offs between the minimum number of driven nodes and the time-to-control. In this study, we propose a generative model to create artificial dynamical networks with trade-offs similar to those of real networks. Remarkably, we show that several centrality and non-centrality measures are not necessary nor sufficient to explain the trade-offs, and as a consequence, commonly used generative models do not suffice to capture the dynamical properties under study. Therefore, we introduce the notion of time-to-control communities, that combine networks’ partitions and degree distributions, which is crucial for the proposed generative model. We believe that the proposed methodology is crucial when invoking generative models to investigate dynamical network properties across science and engineering applications. Lastly, we provide evidence that the proposed generative model can generate a variety of networks with statistically indiscernible trade-offs (i.e., the minimum number of driven nodes vs. the time-to-control) from those steaming from real networks (e.g., neural and social networks).
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236753 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 36753&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0236753
DOI: 10.1371/journal.pone.0236753
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().