EconPapers    
Economics at your fingertips  
 

Process monitoring using inflated beta regression control chart

Luiz M A Lima-Filho, Tarciana Liberal Pereira, Tatiene C Souza and Fábio M Bayer

PLOS ONE, 2020, vol. 15, issue 7, 1-20

Abstract: This paper provides a general framework for controlling quality characteristics related to control variables and limited to the intervals (0, 1], [0, 1), or [0, 1]. The proposed control chart is based on the inflated beta regression model considering a reparametrization of the inflated beta distribution indexed by the response mean, which is useful for modeling fractions and proportions. The contribution of the paper is twofold. First, we extend the inflated beta regression model by allowing a regression structure for the precision parameter. We also present closed-form expressions for the score vector and Fisher’s information matrix. Second, based on the proposed regression model, we introduce a new model-based control chart. The control limits are obtained considering the estimates of the inflated beta regression model parameters. We conduct a Monte Carlo simulation study to evaluate the performance of the proposed regression model estimators, and the performance of the proposed control chart is evaluated in terms of run length distribution. Finally, we present and discuss an empirical application to show the applicability of the proposed regression control chart.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236756 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 36756&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0236756

DOI: 10.1371/journal.pone.0236756

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0236756