Economics at your fingertips  

Implementation of an automated scheduling tool improves schedule quality and resident satisfaction

Frederick M Howard, Catherine A Gao and Christopher Sankey

PLOS ONE, 2020, vol. 15, issue 8, 1-9

Abstract: Rotation schedules for residents must balance individual preferences, compliance with Accreditation Council for Graduate Medical Education guidelines, and institutional staffing requirements. Automation has the potential to improve the consistency and quality of schedules. We designed a novel rotation scheduling tool, the Automated Internal Medicine Scheduler (AIMS), and evaluated schedule quality and resident satisfaction and perceptions of fairness after implementation. We compared schedule uniformity, fulfillment of resident preferences, and conflicting shift assignments for the hand-made 2017–2018 schedule, and the AIMS-generated 2018–2019 schedule. Residents were surveyed in September 2018 to assess perception of schedule quality and fairness. With AIMS, 71/74 (96.0%) interns and 66/82 (80.5%) residents were assigned to their first-choice rotation, a significant increase from the 50/72 (69.4%) interns and 25/82 (30.5%) residents assigned their first-choice in the 2017–2018 academic year. AIMS also yielded significant improvements in the number of night shift/day shift conflicts at the time of rotation switches for interns, with a significant decrease to 0.3 conflicts per intern compared to 0.7 with the prior manual schedule. Twenty-two of 82 residents (27%) completed the survey, and average satisfaction and perception of fairness were 0.7 and 0.9 points higher on a 5-point Likert scale for the AIMS-generated schedule when compared to the non-AIMS schedule. There was no significant difference in the preference for assigned vacation blocks, or in variance for night or ICU rotations. Automated scheduling improved several metrics of schedule quality, as well as resident satisfaction. Future directions include evaluation of the tool in other residency programs and comparison with alternative scheduling algorithms.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link) (text/html) ... 36952&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1371/journal.pone.0236952

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

Page updated 2021-10-02
Handle: RePEc:plo:pone00:0236952