An automatic adaptive method to combine summary statistics in approximate Bayesian computation
Jonathan U Harrison and
Ruth E Baker
PLOS ONE, 2020, vol. 15, issue 8, 1-21
Abstract:
To infer the parameters of mechanistic models with intractable likelihoods, techniques such as approximate Bayesian computation (ABC) are increasingly being adopted. One of the main disadvantages of ABC in practical situations, however, is that parameter inference must generally rely on summary statistics of the data. This is particularly the case for problems involving high-dimensional data, such as biological imaging experiments. However, some summary statistics contain more information about parameters of interest than others, and it is not always clear how to weight their contributions within the ABC framework. We address this problem by developing an automatic, adaptive algorithm that chooses weights for each summary statistic. Our algorithm aims to maximize the distance between the prior and the approximate posterior by automatically adapting the weights within the ABC distance function. Computationally, we use a nearest neighbour estimator of the distance between distributions. We justify the algorithm theoretically based on properties of the nearest neighbour distance estimator. To demonstrate the effectiveness of our algorithm, we apply it to a variety of test problems, including several stochastic models of biochemical reaction networks, and a spatial model of diffusion, and compare our results with existing algorithms.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236954 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 36954&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0236954
DOI: 10.1371/journal.pone.0236954
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().