A model-driven framework for data-driven applications in serverless cloud computing
Fatima Samea,
Farooque Azam,
Muhammad Rashid,
Muhammad Waseem Anwar,
Wasi Haider Butt and
Abdul Wahab Muzaffar
PLOS ONE, 2020, vol. 15, issue 8, 1-32
Abstract:
In a serverless cloud computing environment, the cloud provider dynamically manages the allocation of resources whereas the developers purely focus on their applications. The data-driven applications in serverless cloud computing mainly address the web as well as other distributed scenarios, and therefore, it is essential to offer a consistent user experience across different connection types. In order to address the issues of data-driven application in a real-time distributed environment, the use of GraphQL (Graph Query Language) is getting more and more popularity in state-of-the-art cloud computing approaches. However, the existing solutions target the low level implementation of GraphQL, for the development of a complex data-driven application, which may lead to several errors and involve a significant amount of development efforts due to various users’ requirements in real-time. Therefore, it is critical to simplify the development process of data-driven applications in a serverless cloud computing environment. Consequently, this research introduces UMLPDA (Unified Modeling Language Profile for Data-driven Applications), which adopts the concepts of UML-based Model-driven Architectures to model the frontend as well as the backend requirements for data-driven applications developed at a higher abstraction level. Particularly, a modeling approach is proposed to resolve the development complexities such as data communication and synchronization. Subsequently, a complete open source transformation engine is developed using a Model-to-Text approach to automatically generate the frontend as well as backend low level implementations of Angular2 and GraphQL respectively. The validation of proposed work is performed with three different case studies, deployed on Amazon Web Services platform. The results show that the proposed framework enables to develop the data-driven applications with simplicity.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237317 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37317&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0237317
DOI: 10.1371/journal.pone.0237317
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().