Monitoring Italian COVID-19 spread by a forced SEIRD model
Elena Loli Piccolomini and
Fabiana Zama
PLOS ONE, 2020, vol. 15, issue 8, 1-17
Abstract:
Due to the recent evolution of the COVID-19 outbreak, the scientific community is making efforts to analyse models for understanding the present situation and for predicting future scenarios. In this paper, we propose a forced Susceptible-Exposed-Infected-Recovered-Dead (fSEIRD) differential model for the analysis and forecast of the COVID-19 spread in Italian regions, using the data from the Italian Protezione Civile (Italian Civil Protection Department) from 24/02/2020. In this study, we investigate an adaptation of fSEIRD by proposing two different piecewise time-dependent infection rate functions to fit the current epidemic data affected by progressive movement restriction policies put in place by the Italian government. The proposed models are flexible and can be quickly adapted to monitor various epidemic scenarios. Results on the regions of Lombardia and Emilia-Romagna confirm that the proposed models fit the data very accurately and make reliable predictions.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237417 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37417&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0237417
DOI: 10.1371/journal.pone.0237417
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().