EconPapers    
Economics at your fingertips  
 

Type-I heavy tailed family with applications in medicine, engineering and insurance

Wei Zhao, Saima K Khosa, Zubair Ahmad, Muhammad Aslam and Ahmed Z Afify

PLOS ONE, 2020, vol. 15, issue 8, 1-24

Abstract: In the present study, a new class of heavy tailed distributions using the T-X family approach is introduced. The proposed family is called type-I heavy tailed family. A special model of the proposed class, named Type-I Heavy Tailed Weibull (TI-HTW) model is studied in detail. We adopt the approach of maximum likelihood estimation for estimating its parameters, and assess the maximum likelihood performance based on biases and mean squared errors via a Monte Carlo simulation framework. Actuarial quantities such as value at risk and tail value at risk are derived. A simulation study for these actuarial measures is conducted, proving that the proposed TI-HTW is a heavy-tailed model. Finally, we provide a comparative study to illustrate the proposed method by analyzing three real data sets from different disciplines such as reliability engineering, bio-medical and financial sciences. The analytical results of the new TI-HTW model are compared with the Weibull and some other non-nested distributions. The Baysesian analysis is discussed to measure the model complexity based on the deviance information criterion.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237462 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37462&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0237462

DOI: 10.1371/journal.pone.0237462

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0237462