EconPapers    
Economics at your fingertips  
 

The data dimensionality reduction and bad data detection in the process of smart grid reconstruction through machine learning

Bo Yu, Zheng Wang, Shangke Liu, Xiaomin Liu and Ruixin Gou

PLOS ONE, 2020, vol. 15, issue 10, 1-15

Abstract: To detect false data injection attacks (FDIAs) in power grid reconstruction and solve the problem of high data dimension and bad abnormal data processing in the power system, thereby achieving safe and stable operation of the power grid system, this study introduces machine learning methods to explore the detection of FDIAs. First, through the utilization of the standard IEEE node system and the simulation of FDIAs under the condition of non-complete topology information, the construction of the attack data set is completed, and the MatPower tool is applied to simulate and analyze the data set. Second, based on the isolated Forest (iForest) abnormal score data processing algorithm combined with the Local Linear Embedding (LLE) data dimensionality reduction method, an algorithm for data feature extraction is constructed. Finally, based on the combination of the Convolutional Neural Network (CNN) and the Gated Recurrent Unit (GRU) network, an algorithm model for FDIAs detection is constructed. The results show that in the IEEE14-bus node and IEEE118-bus node systems, the overall distribution of the state estimated before and after the attack vector injection is consistent with the initial value. In the iFores algorithm, the number of iTree and the number of samples affect the extraction of abnormal score data. When the number of iTree n is determined to be 100, and the corresponding number of samples w is determined to be 10, the algorithm has the best detection effect. The FDIAs detection algorithm model based on CNN-GRU shows good detection effects under high attack intensity, with an accuracy rate of more than 95%, and its performance is better than other traditional detection algorithms. In this study, the bad data detection model based on deep learning has an active role in the realization of the safe and stable operation of the smart grid.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237994 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 37994&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0237994

DOI: 10.1371/journal.pone.0237994

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0237994