EconPapers    
Economics at your fingertips  
 

Shiny-SoSV: A web-based performance calculator for somatic structural variant detection

Tingting Gong, Vanessa M Hayes and Eva K F Chan

PLOS ONE, 2020, vol. 15, issue 8, 1-20

Abstract: Somatic structural variants are an important contributor to cancer development and evolution. Accurate detection of these complex variants from whole genome sequencing data is influenced by a multitude of parameters. However, there are currently no tools for guiding study design nor are there applications that could predict the performance of somatic structural variant detection. To address this gap, we developed Shiny-SoSV, a user-friendly web-based calculator for determining the impact of common variables on the sensitivity, precision and F1 score of somatic structural variant detection, including choice of variant detection tool, sequencing depth of coverage, variant allele fraction, and variant breakpoint resolution. Using simulation studies, we determined singular and combinatoric effects of these variables, modelled the results using a generalised additive model, allowing structural variant detection performance to be predicted for any combination of predictors. Shiny-SoSV provides an interactive and visual platform for users to easily compare individual and combined impact of different parameters. It predicts the performance of a proposed study design, on somatic structural variant detection, prior to the commencement of benchwork. Shiny-SoSV is freely available at https://hcpcg.shinyapps.io/Shiny-SoSV with accompanying user’s guide and example use-cases.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238108 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 38108&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0238108

DOI: 10.1371/journal.pone.0238108

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0238108