A simple predictive model for estimating relative e-cigarette toxic carbonyl levels
Shawna Vreeke,
Xijing Zhu and
Robert M Strongin
PLOS ONE, 2020, vol. 15, issue 8, 1-11
Abstract:
E-cigarette devices are wide ranging, leading to significant differences in levels of toxic carbonyls in their respective aerosols. Power can be a useful method in predicting relative toxin concentrations within the same device, but does not correlate well to inter-device levels. Herein, we have developed a simple mathematical model utilizing parameters of an e-cigarette’s coil and wick in order to predict relative levels of e-liquid solvent degradation. Model 1, which is coil length/(wick surface area*wraps), performed in the moderate-to-substantial range as a predictive tool (R2 = 0.69). Twelve devices, spanning a range of coil and wick styles, were analyzed. Model 1 was evaluated against twelve alternative models and displayed the best predictability. Relationships that included power settings displayed weak predictability, validating that power levels cannot be reliably compared between devices due to differing wicking and coil components and heat transfer efficiencies.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238172 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 38172&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0238172
DOI: 10.1371/journal.pone.0238172
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().