EconPapers    
Economics at your fingertips  
 

A novel machine learning strategy for model selections - Stepwise Support Vector Machine (StepSVM)

Chao-Yu Guo and Yu-Chin Chou

PLOS ONE, 2020, vol. 15, issue 8, 1-18

Abstract: An essential aspect of medical research is the prediction for a health outcome and the scientific identification of important factors. As a result, numerous methods were developed for model selections in recent years. In the era of big data, machine learning has been broadly adopted for data analysis. In particular, the Support Vector Machine (SVM) has an excellent performance in classifications and predictions with the high-dimensional data. In this research, a novel model selection strategy is carried out, named as the Stepwise Support Vector Machine (StepSVM). The new strategy is based on the SVM to conduct a modified stepwise selection, where the tuning parameter could be determined by 10-fold cross-validation that minimizes the mean squared error. Two popular methods, the conventional stepwise logistic regression model and the SVM Recursive Feature Elimination (SVM-RFE), were compared to the StepSVM. The Stability and accuracy of the three strategies were evaluated by simulation studies with a complex hierarchical structure. Up to five variables were selected to predict the dichotomous cancer remission of a lung cancer patient. Regarding the stepwise logistic regression, the mean of the C-statistic was 69.19%. The overall accuracy of the SVM-RFE was estimated at 70.62%. In contrast, the StepSVM provided the highest prediction accuracy of 80.57%. Although the StepSVM is more time consuming, it is more consistent and outperforms the other two methods.

Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238384 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 38384&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0238384

DOI: 10.1371/journal.pone.0238384

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0238384