Automatic image annotation method based on a convolutional neural network with threshold optimization
Jianfang Cao,
Aidi Zhao and
Zibang Zhang
PLOS ONE, 2020, vol. 15, issue 9, 1-21
Abstract:
In this study, a convolutional neural network with threshold optimization (CNN-THOP) is proposed to solve the issue of overlabeling or downlabeling arising during the multilabel image annotation process in the use of a ranking function for label annotation along with prediction probability. This model fuses the threshold optimization algorithm to the CNN structure. First, an optimal model trained by the CNN is used to predict the test set images, and batch normalization (BN) is added to the CNN structure to effectively accelerate the convergence speed and obtain a group of prediction probabilities. Second, threshold optimization is performed on the obtained prediction probability to derive an optimal threshold for each class of labels to form a group of optimal thresholds. When the prediction probability for this class of labels is greater than or equal to the corresponding optimal threshold, this class of labels is used as the annotation result for the image. During the annotation process, the multilabel annotation for the image to be annotated is realized by loading the optimal model and the optimal threshold. Verification experiments are performed on the MIML, COREL5K, and MSRC datasets. Compared with the MBRM, the CNN-THOP increases the average precision on MIML, COREL5K, and MSRC by 27%, 28% and 33%, respectively. Compared with the E2E-DCNN, the CNN-THOP increases the average recall rate by 3% on both COREL5K and MSRC. The most precise annotation effect for CNN-THOP is observed on the MIML dataset, with a complete matching degree reaching 64.8%.
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238956 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 38956&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0238956
DOI: 10.1371/journal.pone.0238956
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().