Modelling and impact analysis of interdependent characteristics on cascading overload failure of syncretic railway networks
Su Liu,
Chengshuang Yin,
Dingjun Chen and
Shaoquan Ni
PLOS ONE, 2020, vol. 15, issue 9, 1-16
Abstract:
To study the performance and mutual influence of a syncretic railway network (SRN) that comprises high-speed railway, regional railway, and urban rail transit under the condition of traffic overload during peak hours, we discuss the interdependent characteristics on cascading overload failure of SRNs under the cooperative organization from the perspective of an interdependent network. However, most existing research on cascading failure in interdependent network ignores the inconsistency between the physical structure and transportation organization of the subnetwork in an actual network, in addition to the restrictions on the load redistribution strategy of stations and sections in the load-capacity model of the interdependent network; especially, the influence of transfer behavior on the load redistribution inter subnetwork. In this study, we investigate the robustness of an interdependent SRN under overload and risk propagation. We propose a partially interdependent network model of a multimode rail transit, develop a novel cascading overload failure model with tunable parameters of load redistribution inter subnetwork, and analyze interdependent characteristics, cascade failure process, and robustness of an SRN under multiscene conditions, i.e., different attack and load distribution strategies, via simulations. A case study of an SRN in the metropolitan area of Chengdu, China is presented; the results indicate that, when the reserve coefficient of the metro subnetwork is 0.4 and the overload coefficient of the regional railway subnetwork is greater than 1.2, the station reserve capacity and overload capacity of the SRN is appropriately improved. When passenger load increases to a certain range, the reserve and overload capacities of stations in the regional railway subnetwork do not considerably contribute to robustness. Thus, a surplus load distribution strategy is recommended to improve robustness. The results of this paper have considerable significance for the planning, structural optimization, and operation safety of SRNs.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239096 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 39096&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0239096
DOI: 10.1371/journal.pone.0239096
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().