Early warning model for passenger disturbance due to flight delays
Yunyan Gu,
Jianhua Yang,
Conghui Wang and
Guo Xie
PLOS ONE, 2020, vol. 15, issue 9, 1-13
Abstract:
Disruptive behavior by passengers delayed at airport terminals not only affects personal safety but also reduces civil aviation efficiency and passenger satisfaction. This study investigated the causal mechanisms of disruptive behavior by delayed passengers in three aspects: environmental, managerial, and personal. Data on flight delays at Shenzhen Airport in 2018 were collected and analyzed. The main factors leading to disruptive behavior by delayed passengers were identified, and an early warning model for disturbances was developed using multiple logistic regression and a back-propagation(BP) neural network. The results indicated that the proposed model and method were feasible. Compared to the logistic regression model, the BP neural network model had advantages in predicting disturbances by delayed passengers, showing higher prediction accuracy. The BP network weight analysis method was used to obtain the influence weight of each factor on behavior change of delayed passengers. The influence weight of different factors was obtained, providing an assistant decision-making method to address disruption from flight-delayed passengers.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239141 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 39141&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0239141
DOI: 10.1371/journal.pone.0239141
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().