Information integration and decision making in flowering time control
Linlin Zhao,
Sarah Richards,
Franziska Turck and
Markus Kollmann
PLOS ONE, 2020, vol. 15, issue 9, 1-14
Abstract:
In order to successfully reproduce, plants must sense changes in their environment and flower at the correct time. Many plants utilize day length and vernalization, a mechanism for verifying that winter has occurred, to determine when to flower. Our study used available temperature and day length data from different climates to provide a general understanding how this information processing of environmental signals could have evolved in plants. For climates where temperature fluctuation correlations decayed exponentially, a simple stochastic model characterizing vernalization was able to reconstruct the switch-like behavior of the core flowering regulatory genes. For these and other climates, artificial neural networks were used to predict flowering gene expression patterns. For temperate plants, long-term cold temperature and short-term day length measurements were sufficient to produce robust flowering time decisions from the neural networks. Additionally, evolutionary simulations on neural networks confirmed that the combined signal of temperature and day length achieved the highest fitness relative to neural networks with access to only one of those inputs. We suggest that winter temperature memory is a well-adapted strategy for plants’ detection of seasonal changes, and absolute day length is useful for the subsequent triggering of flowering.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239417 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 39417&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0239417
DOI: 10.1371/journal.pone.0239417
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().