Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice in sub-Saharan Africa: A meta-analysis
Gil Gram,
Dries Roobroeck,
Pieter Pypers,
Johan Six,
Roel Merckx and
Bernard Vanlauwe
PLOS ONE, 2020, vol. 15, issue 9, 1-30
Abstract:
Low productivity and climate change require climate-smart agriculture (CSA) for sub-Saharan Africa (SSA), through (i) sustainably increasing crop productivity, (ii) enhancing the resilience of agricultural systems, and (iii) offsetting greenhouse gas emissions. We conducted a meta-analysis on experimental data to evaluate the contributions of combining organic and mineral nitrogen (N) applications to the three pillars of CSA for maize (Zea mays). Linear mixed effect modeling was carried out for; (i) grain productivity and agronomic efficiency of N (AE) inputs, (ii) inter-seasonal yield variability, and (iii) changes in soil organic carbon (SOC) content, while accounting for the quality of organic amendments and total N rates. Results showed that combined application of mineral and organic fertilizers leads to greater responses in productivity and AE as compared to sole applications when more than 100 kg N ha-1 is used with high-quality organic matter. For yield variability and SOC, no significant interactions were found when combining mineral and organic fertilizers. The variability of maize yields in soils amended with high-quality organic matter, except manure, was equal or smaller than for sole mineral fertilizer. Increases of SOC were only significant for organic inputs, and more pronounced for high-quality resources. For example, at a total N rate of 150 kg N ha-1 season-1, combining mineral fertilizer with the highest quality organic resources (50:50) increased AE by 20% and reduced SOC losses by 18% over 7 growing seasons as compared to sole mineral fertilizer. We conclude that combining organic and mineral N fertilizers can have significant positive effects on productivity and AE, but only improves the other two CSA pillars yield variability and SOC depending on organic resource input and quality. The findings of our meta-analysis help to tailor a climate smart integrated soil fertility management in SSA.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239552 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 39552&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0239552
DOI: 10.1371/journal.pone.0239552
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().