EconPapers    
Economics at your fingertips  
 

Unsupervised color image segmentation: A case of RGB histogram based K-means clustering initialization

Sadia Basar, Mushtaq Ali, Gilberto Ochoa-Ruiz, Mahdi Zareei, Abdul Waheed and Awais Adnan

PLOS ONE, 2020, vol. 15, issue 10, 1-21

Abstract: Color-based image segmentation classifies pixels of digital images in numerous groups for further analysis in computer vision, pattern recognition, image understanding, and image processing applications. Various algorithms have been developed for image segmentation, but clustering algorithms play an important role in the segmentation of digital images. This paper presents a novel and adaptive initialization approach to determine the number of clusters and find the initial central points of clusters for the standard K-means algorithm to solve the segmentation problem of color images. The presented scheme uses a scanning procedure of the paired Red, Green, and Blue (RGB) color-channel histograms for determining the most salient modes in every histogram. Next, the histogram thresholding is applied and a search in every histogram mode is performed to accomplish RGB pairs. These RGB pairs are used as the initial cluster centers and cluster numbers that clustered each pixel into the appropriate region for generating the homogeneous regions. The proposed technique determines the best initialization parameters for the conventional K-means clustering technique. In this paper, the proposed approach was compared with various unsupervised image segmentation techniques on various image segmentation benchmarks. Furthermore, we made use of a ranking approach inspired by the Evaluation Based on Distance from Average Solution (EDAS) method to account for segmentation integrity. The experimental results show that the proposed technique outperforms the other existing clustering techniques by optimizing the segmentation quality and possibly reducing the classification error.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240015 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40015&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0240015

DOI: 10.1371/journal.pone.0240015

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0240015