EconPapers    
Economics at your fingertips  
 

Central venous pressure estimation from ultrasound assessment of the jugular venous pulse

Paolo Zamboni, Anna Maria Malagoni, Erica Menegatti, Riccardo Ragazzi, Valentina Tavoni, Mirko Tessari and Clive B Beggs

PLOS ONE, 2020, vol. 15, issue 10, 1-18

Abstract: Objectives: Acquiring central venous pressure (CVP), an important clinical parameter, requires an invasive procedure, which poses risk to patients. The aim of the study was to develop a non-invasive methodology for determining mean-CVP from ultrasound assessment of the jugular venous pulse. Methods: In thirty-four adult patients (age = 60 ± 12 years; 10 males), CVP was measured using a central venous catheter, with internal jugular vein (IJV) cross-sectional area (CSA) variation along the cardiac beat acquired using ultrasound. The resultant CVP and IJV-CSA signals were synchronized with electrocardiogram (ECG) signals acquired from the patients. Autocorrelation signals were derived from the IJV-CSA signals using algorithms in R (open-source statistical software). The correlation r-values for successive lag intervals were extracted and used to build a linear regression model in which mean-CVP was the response variable and the lagging autocorrelation r-values and mean IJV-CSA, were the predictor variables. The optimum model was identified using the minimum AIC value and validated using 10-fold cross-validation. Results: While the CVP and IJV-CSA signals were poorly correlated (mean r = -0.018, SD = 0.357) due to the IJV-CSA signal lagging behind the CVP signal, their autocorrelation counterparts were highly positively correlated (mean r = 0.725, SD = 0.215). Using the lagging autocorrelation r-values as predictors, mean-CVP was predicted with reasonable accuracy (r2 = 0.612), with a mean-absolute-error of 1.455 cmH2O, which rose to 2.436 cmH2O when cross-validation was performed. Conclusions: Mean-CVP can be estimated non-invasively by using the lagged autocorrelation r-values of the IJV-CSA signal. This new methodology may have considerable potential as a clinical monitoring and diagnostic tool.

Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240057 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40057&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0240057

DOI: 10.1371/journal.pone.0240057

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0240057