Game analysis on the evolution of COVID-19 epidemic under the prevention and control measures of the government
Jinyu Wei,
Li Wang and
Xin Yang
PLOS ONE, 2020, vol. 15, issue 10, 1-16
Abstract:
In this paper, the interaction strategies and the evolutionary game analysis of the actions taken by the government and the public in the early days of the epidemic are incorporated into the natural transmission mechanism model of the epidemic, and then the transmission frequency equations of COVID-19 epidemic is established. According to the cumulative confirmed cases of COVID-19 in the UK and China, the upper limit of the spread of COVID-19 in different evolutionary scenarios is set. Using SPSS to perform logistic curve fitting, the frequency fitting equations of cumulative confirmed cases under different evolution scenarios are obtained respectively. The analysis result shows that the emergency response strategy adopted by the government in the early days of the epidemic can effectively control the spread of the epidemic. Combined with the transmission frequency equation of COVID-19 epidemic, measures taken by the government are analyzed. The influence of each measure on the frequency variable is judged and then the influence on the spread of the epidemic is obtained. Finally, based on the above analysis, the government is advised to adhere to the principles of scientific, initiative and flexibility when facing major epidemics.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240961 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 40961&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0240961
DOI: 10.1371/journal.pone.0240961
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().