Research on hot rolling scheduling problem based on Two-phase Pareto algorithm
Wang Chen,
Zhang Xiufeng and
Zhao Guohua
PLOS ONE, 2020, vol. 15, issue 12, 1-14
Abstract:
Under the background of excess capacity and energy saving in iron and steel enterprises, the hot rolling batch scheduling problem based on energy saving is a multi-objective and multi constraint optimization problem. In this paper, a hybrid multi-objective prize-collecting vehicle routing problem (Hybrid Price Collect Vehicle Routing Problem, HPCVRP) model is established to ensure minimum energy consumption, meet process rules, and maximize resource utilization. A two-phase Pareto search algorithm (2PPLS) is designed to solve this model. The improved MOEA/D with a penalty based boundary intersection distance (PBI) algorithm (MOEA/D-PBI) is introduced to decompose the HPCVRP in the first phase. In the second phase, the multi-objective ant colony system (MOACS) and Pareto local search (PLS) algorithm is used to generate approximate Pareto-optimal solutions. The final solution is then selected according to the actual demand and preference. In the simulation experiment, the 2PPLS is compared with five other algorithms, which shows the superiority of 2PPLS. Finally, the experiment was carried out on actual slab data from a steel plant in Shanghai. The results show that the model and algorithm can effectively reduce the energy consumption in the process of hot rolling batch scheduling.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241077 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41077&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0241077
DOI: 10.1371/journal.pone.0241077
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().