EconPapers    
Economics at your fingertips  
 

Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration

Yonggang Ji and Haifang Shi

PLOS ONE, 2020, vol. 15, issue 10, 1-34

Abstract: This paper presents a Bayesian analysis of linear mixed models for quantile regression based on a Cholesky decomposition for the covariance matrix of random effects. We develop a Bayesian shrinkage approach to quantile mixed regression models using a Bayesian adaptive lasso and an extended Bayesian adaptive group lasso. We also consider variable selection procedures for both fixed and random effects in a linear quantile mixed model via the Bayesian adaptive lasso and extended Bayesian adaptive group lasso with spike and slab priors. To improve mixing of the Markov chains, a simple and efficient partially collapsed Gibbs sampling algorithm is developed for posterior inference. Simulation experiments and an application to the Age-Related Macular Degeneration Trial data to demonstrate the proposed methods.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241197 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41197&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0241197

DOI: 10.1371/journal.pone.0241197

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0241197