Computer vision supported pedestrian tracking: A demonstration on trail bridges in rural Rwanda
Evan Thomas,
Sally Gerster,
Lambert Mugabo,
Huguens Jean and
Tim Oates
PLOS ONE, 2020, vol. 15, issue 10, 1-17
Abstract:
Trail bridges can improve access to critical services such as health care, schools, and markets. In order to evaluate the impact of trail bridges in rural Rwanda, it is helpful to objectively know how and when they are being used. In this study, we deployed motion-activated digital cameras across several trail bridges installed by the non-profit Bridges to Prosperity. We conducted and validated manual counting of bridge use to establish a ground truth. We adapted an open source computer vision algorithm to identify and count bridge use reflected in the digital images. We found a reliable correlation with less than 3% error bias of bridge crossings per hour between manual counting and those sites at which the cameras logged short video clips. We applied this algorithm across 186 total days of observation at four sites in fall 2019, and observed a total of 33,800 daily bridge crossings ranging from about 20 to over 1,100 individual uses per day, with no apparent correlation between daily or total weekly rainfall and bridge use, potentially indicating that transportation behaviors, after a bridge is installed, are no longer impacted by rainfall conditions. Higher bridge use was observed in the late afternoons, on market and church days, and roughly equal use of the bridge crossings in each direction. These trends are consistent with the design-intent of these bridges.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241379 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41379&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0241379
DOI: 10.1371/journal.pone.0241379
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().