Patent citation network analysis: A perspective from descriptive statistics and ERGMs
Manajit Chakraborty,
Maksym Byshkin and
Fabio Crestani
PLOS ONE, 2020, vol. 15, issue 12, 1-28
Abstract:
Patent Citation Analysis has been gaining considerable traction over the past few decades. In this paper, we collect extensive information on patents and citations and provide a perspective of citation network analysis of patents from a statistical viewpoint. We identify and analyze the most cited patents, the most innovative and the highly cited companies along with the structural properties of the network by providing in-depth descriptive analysis. Furthermore, we employ Exponential Random Graph Models (ERGMs) to analyze the citation networks. ERGMs enables understanding the social perspectives of a patent citation network which has not been studied earlier. We demonstrate that social properties such as homophily (the inclination to cite patents from the same country or in the same language) and transitivity (the inclination to cite references’ references) together with the technicalities of the patents (e.g., language, categories), has a significant effect on citations. We also provide an in-depth analysis of citations for sectors in patents and how it is affected by the size of the same. Overall, our paper delves into European patents with the aim of providing new insights and serves as an account for fitting ERGMs on large networks and analyzing them. ERGMs help us model network mechanisms directly, instead of acting as a proxy for unspecified dependence and relationships among the observations.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241797 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 41797&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0241797
DOI: 10.1371/journal.pone.0241797
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().