EconPapers    
Economics at your fingertips  
 

Optimization of mine ventilation network feature graph

Jinzhang Jia, Bin Li, Dinglin Ke, Yumo Wu, Dan Zhao and Mingyu Wang

PLOS ONE, 2020, vol. 15, issue 11, 1-26

Abstract: A ventilation network feature graph can directly and quantitatively represent the features of a ventilation network. To ensure the stability of airflow in a mine and improve ventilation system analysis, we propose a new algorithm to draw ventilation network feature graphs. The independent path method serves as the algorithm’s main frame, and an improved adaptive genetic algorithm is embedded so that the graph may be drawn better. A mathematical model based on the node adjacency matrix method for unidirectional circuit discrimination is constructed as the drawing algorithm may not be valid in such cases. By modifying the edge-seeking strategy, the improved depth-first search algorithm can be used to determine all of the paths in the ventilation network with unidirectional circuits, and the equivalent transformation method of network topology relations is used to draw the ventilation network feature graph. Through the analysis of the topological relation of a ventilation network, a simplified mathematical model is constructed, and network simplification technology makes the drawing concise and hierarchical. The rapid and intuitive drawing of the ventilation network feature graphs is significant for optimization of the ventilation system and day-to-day management.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242011 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 42011&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0242011

DOI: 10.1371/journal.pone.0242011

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0242011