EconPapers    
Economics at your fingertips  
 

Prediction of hierarchical time series using structured regularization and its application to artificial neural networks

Tomokaze Shiratori, Ken Kobayashi and Yuichi Takano

PLOS ONE, 2020, vol. 15, issue 11, 1-23

Abstract: This paper discusses the prediction of hierarchical time series, where each upper-level time series is calculated by summing appropriate lower-level time series. Forecasts for such hierarchical time series should be coherent, meaning that the forecast for an upper-level time series equals the sum of forecasts for corresponding lower-level time series. Previous methods for making coherent forecasts consist of two phases: first computing base (incoherent) forecasts and then reconciling those forecasts based on their inherent hierarchical structure. To improve time series predictions, we propose a structured regularization method for completing both phases simultaneously. The proposed method is based on a prediction model for bottom-level time series and uses a structured regularization term to incorporate upper-level forecasts into the prediction model. We also develop a backpropagation algorithm specialized for applying our method to artificial neural networks for time series prediction. Experimental results using synthetic and real-world datasets demonstrate that our method is comparable in terms of prediction accuracy and computational efficiency to other methods for time series prediction.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242099 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 42099&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0242099

DOI: 10.1371/journal.pone.0242099

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0242099