EconPapers    
Economics at your fingertips  
 

Predicting time to graduation at a large enrollment American university

John M Aiken, Riccardo De Bin, Morten Hjorth-Jensen and Marcos D Caballero

PLOS ONE, 2020, vol. 15, issue 11, 1-28

Abstract: The time it takes a student to graduate with a university degree is mitigated by a variety of factors such as their background, the academic performance at university, and their integration into the social communities of the university they attend. Different universities have different populations, student services, instruction styles, and degree programs, however, they all collect institutional data. This study presents data for 160,933 students attending a large American research university. The data includes performance, enrollment, demographics, and preparation features. Discrete time hazard models for the time-to-graduation are presented in the context of Tinto’s Theory of Drop Out. Additionally, a novel machine learning method: gradient boosted trees, is applied and compared to the typical maximum likelihood method. We demonstrate that enrollment factors (such as changing a major) lead to greater increases in model predictive performance of when a student graduates than performance factors (such as grades) or preparation (such as high school GPA).

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242334 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 42334&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0242334

DOI: 10.1371/journal.pone.0242334

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0242334