Mechanistic modeling and numerical simulation of axial flow catalytic reactor for naphtha reforming unit
Mahboubeh Pishnamazi,
Ali Taghvaie Nakhjiri,
Mashallah Rezakazemi,
Azam Marjani and
Saeed Shirazian
PLOS ONE, 2020, vol. 15, issue 11, 1-14
Abstract:
Naphtha catalytic reforming (NCR) process has been of tremendous attention all over the world owing to the significant requirement for high-quality gasoline. Industrialized naphtha reforming unit at oil refineries applies a series of fixed bed reactors (FBRs) to improve the quality of the low-octane hydrocarbons and convert them to more valuable products. The prominent purpose of this research is to understand the catalytic reactor of naphtha reforming unit. For this aim, an appropriate mechanistic modeling and its related CFD-based computational simulation is presented to predict the behavior of the system when the reactors are of the axial flow type. Also, the triangular meshing technique (TMT) is performed in this paper due to its brilliant ability to analyze the results of model’s predictions along with improving the computational accuracy. Additionally, mesh independence analysis is done to find the optimum number of meshes needed for reaching the results convergence. Moreover, suitable kinetic and thermodynamic equations are derived based on Smith model to describe the NCR process. The results proved that the proceeding of NCR process inside the reactor significantly increased the concentration amount of aromatic materials, lighter ends and hydrogen, while deteriorated the concentration amount of naphthene and paraffin. Moreover, the pressure drop along the reactor length was achieved very low, which can be considered as one of the momentous advantages of NCR process.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242343 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 42343&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0242343
DOI: 10.1371/journal.pone.0242343
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().