Multiscale based nonlinear dynamics analysis of heart rate variability signals
Syed Zaki Hassan Kazmi,
Nazneen Habib,
Rabia Riaz,
Sanam Shahla Rizvi,
Syed Ali Abbas and
Tae-Sun Chung
PLOS ONE, 2020, vol. 15, issue 12, 1-14
Abstract:
Acceleration change index (ACI) is a fast and easy to understand heart rate variability (HRV) analysis approach used for assessing cardiac autonomic control of the nervous systems. The cardiac autonomic control of the nervous system is an example of highly integrated systems operating at multiple time scales. Traditional single scale based ACI did not take into account multiple time scales and has limited capability to classify normal and pathological subjects. In this study, a novel approach multiscale ACI (MACI) is proposed by incorporating multiple time scales for improving the classification ability of ACI. We evaluated the performance of MACI for classifying, normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation subjects. The findings reveal that MACI provided better classification between healthy and pathological subjects compared to ACI. We also compared MACI with other scale-based techniques such as multiscale entropy, multiscale permutation entropy (MPE), multiscale normalized corrected Shannon entropy (MNCSE) and multiscale permutation entropy (IMPE). The preliminary results show that MACI values are more stable and reliable than IMPE and MNCSE. The results show that MACI based features lead to higher classification accuracy.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243441 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 43441&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0243441
DOI: 10.1371/journal.pone.0243441
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().