StationRank: Aggregate dynamics of the Swiss railway
Georg Anagnostopoulos and
Vahid Moosavi
PLOS ONE, 2020, vol. 15, issue 12, 1-17
Abstract:
Increasing availability and quality of actual, as opposed to scheduled, open transport data offers new possibilities for capturing the spatiotemporal dynamics of railway and other networks of social infrastructure. One way to describe such complex phenomena is in terms of stochastic processes. At its core, a stochastic model is domain-agnostic and algorithms discussed here have been successfully used in other applications, including Google’s PageRank citation ranking. Our key assumption is that train routes constitute meaningful sequences analogous to sentences of literary text. A corpus of routes is thus susceptible to the same analytic tool-set as a corpus of sentences. With our experiment in Switzerland, we introduce a method for building Markov Chains from aggregated daily streams of railway traffic data. The stationary distributions under normal and perturbed conditions are used to define systemic risk measures with non-evident, valuable information about railway infrastructure.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244206 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 44206&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0244206
DOI: 10.1371/journal.pone.0244206
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().