A methodology and theoretical taxonomy for centrality measures: What are the best centrality indicators for student networks?
Kristel Vignery and
Wim Laurier
PLOS ONE, 2020, vol. 15, issue 12, 1-32
Abstract:
In order to understand and represent the importance of nodes within networks better, most of the studies that investigate graphs compute the nodes’ centrality within their network(s) of interest. In the literature, the most frequent measures used are degree, closeness and/or betweenness centrality, even if other measures might be valid candidates for representing the importance of nodes within networks. The main contribution of this paper is the development of a methodology that allows one to understand, compare and validate centrality indices when studying a particular network of interest. The proposed methodology integrates the following steps: choosing the centrality measures for the network of interest; developing a theoretical taxonomy of these measures; identifying, by means of Principal Component Analysis (PCA), latent dimensions of centrality within the network of interest; verifying the proposed taxonomy of centrality measures; and identifying the centrality measures that best represent the network of interest. Also, we applied the proposed methodology to an existing graph of interest, in our case a real friendship student network. We chose eighteen centrality measures that were developed in SNA and are available and computed in a specific library (CINNA), defined them thoroughly, and proposed a theoretical taxonomy of these eighteen measures. PCA showed the emergence of six latent dimensions of centrality within the student network and saturation of most of the centrality indices on the same categories as those proposed by the theoretical taxonomy. Additionally, the results suggest that indices other than the ones most frequently applied might be more relevant for research on friendship student networks. Finally, the integrated methodology that we propose can be applied to other centrality indices and/or other network types than student graphs.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244377 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 44377&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0244377
DOI: 10.1371/journal.pone.0244377
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().